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Abstract

For tri-diagonal matrices arising in the simplified Jaynes–Cummings model, we give an asymptotics of
the eigenvalues, prove a trace formula and show that the Spectral Riemann Surface is irreducible.
© 2005 Published by Elsevier Inc.

1. Introduction

We consider one-sided tri-diagonal matrices of the form L + zB, where

L =

⎡⎢⎢⎢⎢⎣
q1 0 0 0 ·
0 q2 0 0 ·
0 0 q3 0 ·
0 0 0 q4 ·
· · · · ·

⎤⎥⎥⎥⎥⎦ , B =

⎡⎢⎢⎢⎢⎣
0 b1 0 0 ·
c1 0 b2 0 ·
0 c2 0 b3 ·
0 0 c3 0 ·
· · · · ·

⎤⎥⎥⎥⎥⎦ (1.1)

and study their spectra in the case where the diagonal matrix majorizes the off-diagonal one in
the sense of the following condition (or some version of it):

|qk| → ∞,
(|bk| + |ck|)2

|qkqk+1| → 0. (1.2)
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There is a vast literature (see [6,13,14,29] and the bibliography therein) devoted to a broad range
of questions on these matrices and the corresponding operators in �2(N). We will be concerned
with the following three questions:

1. Spectra Sp(L + zB). Of course, Sp(L) = {qk, k = 1, 2, . . .} and

Lek = qkek, k = 1, 2, . . . ,

where {ek}∞1 is the canonical orthonormal basis in �2(N). Under condition (1.2), the spectrum
Sp(L + zB) is discrete as well (see, e.g., [5, Lemma 8 ] or [12,32]), and

Sp(L + zB) = {En(z)}∞1 ,

where, for each n, En(z) is an analytic function at least for small |z|, i.e., in the disk |z| < Rn for
some Rn > 0.

(1.A) How large could Rn be chosen?
Let us mention that in the case of Mathieu operator Volkmer [37] proved that Rn � n2 (see

further discussion in Sections 7.1–7.3).
(1.B) What is the asymptotic behavior of En(z) if z is bounded, say |z|�R, and n → ∞?
2. Under conditions (1.2) and some further assumptions on the sequences q, b and c, one can

introduce the regularized trace

tr(z) =
∞∑

n=1

(En(z) − qn)

as an entire function—see Definition in Section 5.4.
Can we evaluate it in specific examples?
3. Spectral Riemann Surface (SRS) of the pair (L, B) ∈ (1.1), (1.2) is defined as

G = {(�, z) ∈ C2 : (L + zB)f = �f, f ∈ �2(N), f �= 0}.
F.W. Schäfke proved that in the case of the Mathieu equation

−y′′ + z(cos 2x)y = �y,

that is,

L = −(d/dx)2, By = (cos 2x)y,

the SRS is irreducible [20, pp. 88–89]; see also [40]. We use Schäfke’s scheme to prove that the
SRS G is irreducible in the case of the simplified Jaynes–Cummings model (Theorem 3).

We focus our attention on special tri-diagonal matrices which are motivated by the analysis of
second-order differential operators in the framework of Fourier method.

Example 1. Let

qk = k2, bk = ck = k�, 0�� < 2. (1.3)

If

� = 0, (1.4)
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we have the Mathieu matrices, and if

� = 1/2, (1.5)

we have the simplified Jaynes–Cumming matrices that have been considered by Boutet-de-Monvel
et al. [4].

Example 2. More general q,

qk = k�, bk = ck = k�, ��� + 1/2.

The case � = 1, � = 1/2 comes from the Jaynes–Cumming model (see Tur [31,33]).

Example 3. The Whittaker–Hill matrices (see [18, Chapter 7] and [5])

qk = k2 or (2k + 1)2, bk = t − k, ck = t + k, t �0 fixed. (1.6)

We do not provide details about the Fourier method or the gauge transform which lead us from
the differential operator

−y′′ + (a cos 2x + b cos 4x)y

to matrices (1.1) with (1.6). See [5,11,18,36]. In Section 7.1, Propositions 18 and 19, we use
results about differential operators [37–39] to find asymptotics of the radius of analyticity Rn in
the case of matrices (1.6).

Matrices (1.3)–(1.5) and (2.1), (2.2) is the main object of interest in this paper. Now we spotlight
some of its results. Below En(z) means the nth eigenvalue of L + zB.

Theorem 1. Suppose (2.1) and (2.2) with 0���1/2 hold, and limk bkckk
−1 = � exists for

� = 1/2. Then, for � ∈ [0, 1/2], the regularized trace tr(�, z) is well-defined entire function, and

tr(�, z) ≡
∞∑
1

(En(z) − n2) =
{

0, 0�� < 1/2,

−(�/2)z2, � = 1/2.
(1.7)

See further comments in Section 7.6, Proposition 23.

Theorem 2. Suppose that (1.3) holds and � ∈ [0, 2/3]. For each R > 0, there is nR > 0, such
that for n�nR the eigenvalues En(z), |z|�R, are well defined and

En(z) = n2 + z2
(

1 − 2�

2n2−2� + �2 − �

n3−2� + (1 − 2�)(8�2 − 14� + 3)

24n4−2�

)
+ O

(
nmax(2�−5,4�−6)

)
. (1.8)

See Theorem 11 in Section 4.4 also. (For � = 1/2 similar formula was given in [4] but it was
not correct).

Theorem 3. In case (1.3) with � ∈ [0, 0.085] or � ∈ [(2 − √
2)/4, 1/2], the SRS

G = {(�, z) ∈ C2 : � ∈ Sp(L + zB)},
is irreducible.
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See further comments in Section 7.5, Proposition 22. In the case of anharmonic oscillator

Ly = −y′′ + x4y, By = x2y, x ∈ R

a question about structure of SRS and its branching points has been raised and solved (!) by
Bender and Wu [1]; see also [25–28,34,35].

The case of Mathieu–Hill operators could be deduced to Example (1.3)+ (1.4); it has a longer
history (see [2,3,10,19,20,37,39,40]). Some observations about Whittaker–Hill operators could
be found in [5, Section 5.4].

4. In the course of proving Theorems 1–3, we observe a series of facts and inequalities about the
eigenvalues of the operators L + zB which could be of some interest by themselves. We discuss
them in detail in related sections of the paper or in Section 7.

2. Localization of the spectra

1. Well-known methods of Perturbation Theory give information about the spectra Sp(L+zB)

if L, B ∈ (1.1), (1.2). For a while, let us assume that the sequences q, b, c satisfy the conditions

qk = k2, (2.1)

|bk|, |ck|�Mk�, 0�� < 2. (2.2)

For each n ∈ N we set

�n = {z ∈ C : |z|�Rn}, Rn = n1−�/(8M). (2.3)

Proposition 4. Under conditions (2.1) and (2.2), the spectrum of the operator L+zB is discrete,
and for each n and z ∈ �n there is exactly one eigenvalue En(z) in the strip

Hn = {� ∈ C : n2 − n�Re ��n2 + n}.
Moreover, the function En(z) is analytic in �n,

En(0) = n2 (2.4)

and ∣∣∣En(z) − n2
∣∣∣ �n if |z|�Rn. (2.5)

Proof. The resolvent-operator

R� = (� − L − zB)−1 = R0
�

(
1 − zBR0

�

)−1
where R0

� = (� − L)−1 (2.6)

is well defined if

� �∈ Sp(L) and |z| · ‖BR0
�‖ < 1.

Let Kn be the open disk with center n2 and radius n, i.e.,

Kn = {� ∈ C : |� − n2| < n}. (2.7)
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By (2.8) (see Lemma 5 below), we have |z| · ‖BR0
�‖ < 1 for |z|�Rn and � ∈ Hn \ Kn, thus

Sp(L + zB) ∩ (Hn \ Kn) = ∅.

If z = 0, then Sp(L) = {k2 : k ∈ N}, so n2 is the only eigenvalue inside the circle �Kn. It is
simple, and for each z ∈ �n the operator L + zB has exactly one simple eigenvalue En(z) ∈ Kn

because

dim

(
1

2�i

∫
�Kn

(� − L − zB)−1 d�

)
≡ 1.

Moreover, it is well known that simple eigenvalues depend analytically on the perturbation param-
eter (e.g., see [15]), and therefore, for each n, En(z) is an analytic function on �n. This completes
the proof of Proposition 4. �

2. The next lemma gives the estimate of the norm ‖BR0
�‖.

Lemma 5. Under assumptions (2.1) and (2.2), if � = x + it ∈ Hn \ Kn, then

‖BR0
�‖�2M max(2, 2�)n�−1, ∀t ∈ R, (2.8)

‖BR0
�‖�2M max(2, 2�)n�/|t | if n� |t |�n2, (2.9)

‖BR0
�‖�4M2�|t |(�−2)/2 if |t |�n2. (2.10)

Proof. Since R0
� = {1/(� − k2)} is a diagonal operator, while B is an off-diagonal one, the norm

‖BR0
�‖ does not exceed, in view of (2.2),

‖BR0
�‖� sup

k

|bk| + |ck−1|
|� − k2| � sup

k

2Mk�

|� − k2| . (2.11)

For every t ∈ R, if k < n, then |� − k2|�n − 1�n/2, and therefore, k�/|� − k2|�2n�−1. For
k = n, we have n�/|�−n2|�n�−1 because |�−n2|�n. If n < k�2n, then |�−k2|�k2−n2−n >

n, so k�/|� − k2|�2�n�−1; finally, if k > 2n then n < k/2, and therefore,

|� − k2|�k2 − n2 − n�k2 − (k/2)2 − k/2�k2/2, (2.12)

so k�/|� − k2|�2k�−2 �2n�−2 because � < 2. Hence (2.8) holds.
Next we consider the case where n� |t |�n2. Since |� − k2|� |t | we have, for k�2n, that

k�/|� − k2|�(2n)�/|t |. If k > 2n, then we obtain, as above, that (2.12) holds, thus

k�/|� − k2|�2k�/k2 �2n�/n2 �2n�/|t |,
which proves (2.9).

Consider now the case where |t |�n2. If k2 �4|t |, then (since |� − k2|� |t |)
k�/|� − k2|�k�/|t |�2�|t |�/2/|t |.

If k2 �4|t |�4n2 then (2.12) holds, thus k�/|� − k2|�2k�−2 �2|4t |(�−2)/2, which completes the
proof of Lemma 5. �
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3. By Proposition 4, for each k there is a disk �k of radius Rk(�) = k1−�/(8M) with the
property that the operator L + zB has exactly one simple eigenvalue Ek(z) in the strip Hk. If
� ∈ [0, 1), then Rk(�) ↑ ∞ as k → ∞.

Let us fix � ∈ [0, 1) and n ∈ N. If m > n, then �n ⊂ �m, so for each z ∈ �n

Sp(L + zB) ∩
⎛⎝⋃

m�n

Hm

⎞⎠ ⊂
⋃

m�n

Km,

where Km is defined in (2.7). Set

Wn = {� ∈ C : −n < Re � < n2 + n, |Im �| < n}.

Proposition 6. Under conditions (2.1)–(2.3), if � ∈ [0, 1), then for each z ∈ �n

Sp(L + zB) ⊂ Wn ∪
⋃
m>n

Km. (2.13)

Moreover, the projector

P∗(z) = 1

2�i

∫
�Wn

(� − L − zB)−1 d� (2.14)

is well defined for z ∈ �n, and

dim P∗(z) = n. (2.15)

Proof. Set H = {� ∈ C : Re ��n2 + n}. Then,

sup
k

k�

|� − k2| = n�−1 for � ∈ H \ Wn. (2.16)

Indeed, if k�n, then |� − k2|�n, so k�/|� − k2|�n�−1; if k > n, then |� − k2|�k, thus
k�/|� − k2|�k�−1 �n�−1 because � ∈ [0, 1).

By (2.16) and (2.11), we obtain that if |z| < n1−�/8M , then

|z| · ‖BR0
�‖ < 1/2 for � ∈ H \ Wn.

Therefore, in view of (2.6), for each z ∈ �n,

Sp(L + zB) ∩ (H \ Wn) = ∅,

which proves (2.13) because C = H ∪⋃m>n Hm.
Moreover, the projector

P∗(z) = 1

2�i

∫
�Wn

(� − L − zB)−1 d�.

is well defined for each z ∈ �n, and since its dimension is a constant, we obtain that dim P∗(z) =
dim P∗(0) = n. �
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3. The Taylor coefficients of analytic functions En(z)

1. For each n ∈ N, we consider the rectangles

� = �(n, s) = {� ∈ C : |Re(� − n2)|�n, |Im �|�s}. (3.1)

Then, the one-dimensional Riesz projector

Pn(z) = 1

2�i

∫
��

(� − L − zB)−1 d� (3.2)

is well defined for |z|�Rn and does not depend on s for s > n + 1 as it follows from (2.13) and
(2.7). The integrand in (3.2) is an analytic function of (�, z) ∈ (Hn \ �) × �n.

Since

En(z)Pn(z) = 1

2�i

∫
��

�(� − L − zB)−1 d�, (3.3)

we obtain that

En(z) = Trace

(
1

2�i

∫
��

�(� − L − zB)−1 d�

)
. (3.4)

Formulas (3.2)–(3.3) are basic for what follows in this section. They are used to derive formulas
for the Taylor coefficients of En(z), and to obtain a trace formula.

Let

En(z) =
∞∑

k=0

ak(n)zk, a0(n) = n2, (3.5)

be the Taylor expansion of En(z) at 0.

Proposition 7. Under conditions (2.1) and (2.2) with � ∈ [0, 1), we have

ak(n) =
∑
j

1

2�i

∫
��

�〈R0
�(BR0

�)
kej , ej 〉 d�, (3.6)

where∫
��

�〈R0
�(BR0

�)
kej , ej 〉 d� = 0 if |j − n| > k,

ak(n) =
∑

|j−n|�k

1

2�i

∫
��

(� − n2)〈R0
�(BR0

�)
kej , ej 〉 d�, (3.7)

ak(n) ≡ 0 for odd k, (3.8)

|ak(n)|�2(2k + 1)
(4M)k

n(1−�)k−1
, k�2. (3.9)

Proof. By (3.2) and (2.6),

Pn(z) = 1

2�i

∫
��

∞∑
k=0

R0
�(BR0

�)
kzk d� =

∞∑
k=0

pk(n)zk, (3.10)
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where the integrand-series converges absolutely and uniformly for z ∈ �n and � ∈ ��, and

pk(n) = 1

2�i

∫
��

R0
�(BR0

�)
k d�, k = 0, 1, 2, . . . (3.11)

are the Taylor coefficients of Pn(z) ∈ (3.2).
We have

p0(n)en = en, p0(n)ej = 0 for j �= n. (3.12)

Moreover, for each k = 1, 2, . . .,

pk(n)ej = 0 if |j − n| > k. (3.13)

Indeed,

pk(n)ej = 1

2�i

∫
��

R0
�(BR0

�)
kej d�. (3.14)

Since Be� is a linear combination of e�−1 and e�+1, while R0
�e� = 1/(� − �2)e�, the singularity

1/(�−n2) (or its power) could appear in the integrand only if |j −n|�k. Therefore, if |j −n| > k,

then the integrand is an analytic function on �, so the integral vanishes.
Since dim Pn(z) ≡ 1,∑

j

〈Pn(z)ej , ej 〉 ≡ 1, (3.15)

which implies, in view of (3.12) and (3.13), that∑
j

〈p0(n)ej , ej 〉 = 1, (3.16)

∑
j

〈pk(n)ej , ej 〉 = 0, k = 1, 2, . . . . (3.17)

Set

En(z) Pn(z) =
∞∑

k=0

dk(n)zk. (3.18)

Then, by (3.5) and (3.10),

dk(n) =
k∑

�=0

a�(n)pk−�(n). (3.19)

Now (3.16) and (3.17) imply, in view of (3.12) and (3.13), that

ak(n) =
∑

|j−n|�k

〈dk(n)ej , ej 〉. (3.20)

By (3.3), taking into account the power series expansion of the resolvent, we obtain

ak(n) =
∑

|j−n|�k

1

2�i

∫
��

�〈R0
�(BR0

�)
kej , ej 〉 d�. (3.21)
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Since R0
� is a diagonal operator, and Bej is a linear combination of ej−1 and ej+1, we have

�〈(BR0
�)

kej , ej 〉 = 0, ∀j if k is odd. (3.22)

Therefore, the same argument that explains (3.13) (see (3.14) and the text after it) shows that the
integrals in (3.21) are equal to zero if |j − n| > k, which proves (3.6).

Since Bej is a linear combination of ej−1 and ej+1 and R0
� is a diagonal operator, we obtain

for odd k that (BR0
�)

kej is a finite linear combination of vectors e� such that �− j is odd number,
so � �= j . Therefore, if k is odd, then for each j the integrands in (3.6) are equal to zero, which
proves (3.8).

By (3.13), (3.14) and (3.17), we have∑
|j−n|�k

1

2�i

∫
��

〈R0
�(BR0

�)
kej , ej 〉 d� = 0,

thus (3.6) implies (3.7).
Next we prove (3.9). Let us replace the contour �� in (3.7) by the circle �Kn = {� : |�−n2| =

n}. Fix j with |j −n|�k and consider the corresponding integral. The integrand does not exceed

sup
�∈�Kn

(
|� − n2| · ‖R0

�‖ · ‖BR0
�‖k
)

.

By (2.8), we have, for � ∈ [0, 1),

‖BR0
�‖�4Mn�−1 if � ∈ �Kn.

On the other hand, |� − n2| = n on �Kn, and

‖R0
�‖ = sup

j

1

� − j2 � 2

n
for � ∈ �Kn.

Thus, for each j , the integrand does not exceed 2(4M)kn(�−1)k and the length of �Kn is equal to
2�n, which leads to the estimate (3.9). �

2. Next we give another integral representation of the coefficients ak(n).

Proposition 8. Under conditions (2.1) and (2.2) with � ∈ [0, 1) we have, for each k�2,

ak(1) = �k(1), ak(n) = �k(n) − �k(n − 1), n�2, (3.23)

with

�k(n) =
∑
j

1

2�i

∫
hn

�〈R0
�(BR0

�)
kej , ej 〉 d�, (3.24)

where

hn = {� ∈ C : Re � = n2 + n}, (3.25)

and ∫
hn

�〈R0
�(BR0

�)
kej , ej 〉 d� = 0 if |j − n| > k.
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Moreover,

|�k(n)|� Ck

n(1−�)k−2
, k > 1, Ck = (2k + 1)(8M)k. (3.26)

Proof. Letting s → ∞ in (3.6), we obtain (3.23)–(3.25). To justify this limit procedure, we have
to explain that:

(i) the integrals over hn and hn−1 converge;
(ii) the integrals over horizontal sides of ��(n, s) ∈ (3.1) go to zero as n → ∞;

(iii) the integrals over hn are equal to zero if |j − n| > k; and
(iv) ak(1) = �k(1).

Indeed, (i) and (ii) hold because the integrand in (3.6), for each even k�2, is a linear combination
of rational functions of the form

Q(J, �) = �

(� − j2
0 )(� − j2

1 ) · · · (� − j2
k )

, J = (j0, . . . , jk), (3.27)

and therefore, the integrand decays faster than 1/|�|2 as |�| → ∞.
(iii) If j − n > k (respectively, n − j > k), then the integrand is a sum of terms (3.27) with

j0, . . . , jk > n (respectively, j0, . . . , jk < n ). Consider the contour that consist of the segment
{� ∈ hn : |Im �|�s} and the left half (respectively, right half) of the circle with center n2 + n

and radius s. Since the integrand is an analytic function inside the contour, the integral is equal
to zero. Letting s → ∞ we obtain that the integral over hn is zero, because the integral over the
half-circle goes to zero due to the fact that the integrand decays as 1/|�|2 or more rapidly.

The same argument shows, for each j , that the integral over the imaginary line Re � = 0 equals
zero, which explains (iv).

Finally, we prove (3.26). By (3.24), the function �k(n) is a sum of at most 2k +1 integrals over
hn of the form

1

2�i

∫
hn

�〈R0
�(BR0

�)
kej , ej 〉 d�. (3.28)

The absolute value of integral (3.28) does not exceed

1

2�

∫
R

F(t) dt where F(t) = ‖�R0
�(BR0

�)
k‖, � = n2 + n + it. (3.29)

Next, we estimate from above F(t)�‖�R0
�‖ · ‖BR0

�‖k . Lemma 5 gives estimates of the norm
‖BR0

�‖ on each of the three sets

I1 = {t : |t |�n}, I1 = {t : n� |t |�n2}, I1 = {t : |t |�n2}.
On the other hand, we have

‖�R0
�‖ = |n2 + n + it |

|n + it | �

⎧⎨⎩
n + 1, t ∈ I1,

2n2/|t |, t ∈ I2,

2, t ∈ I3.

(3.30)
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If we combine (3.30) with estimates (2.8)–(2.10) from Lemma 5, we get

F(t)�

⎧⎪⎨⎪⎩
2n
(
4Mn�−1

)k
, t ∈ I1,

2n2
(
4Mn�|t |−1

)k
, t ∈ I2,

2
(
8M|t |(�−2)/2

)k
, t ∈ I3.

(3.31)

Therefore, since∫
R

F(t) =
∫

I1

F(t) +
∫

I2

F(t) +
∫

I3

F(t),

estimates (3.31) imply that (3.26) holds. �

3. Formulas (3.23) and (3.24) could be used to find the Taylor coefficients of En(z). Indeed,
under conditions (2.1) and (2.2) with � ∈ [0, 1), a computation based on the standard residue
approach shows that

�2(n) = − bncn

2n + 1
, (3.32)

�4(n) = b2
nc

2
n

(2n + 1)3 − bnbn+1cncn+1

(2n + 1)2(4n + 4)
− bnbn−1cncn−1

4n(2n + 1)2 . (3.33)

For any off-diagonal sequences b, c ∈ (2.1) + (2.2), it follows from (3.26) that as n → ∞
�k(n) → 0 if � < 2/3, k�6, (3.34)

and by (3.32), (3.33)

�2(n) → 0 if � < 1/2, �4(n) → 0 if � < 3/4. (3.35)

Now, by (3.34) and (3.23),

∞∑
n=1

ak(n) = 0 if k�6, � ∈ [0, 1/2]. (3.36)

If (1.3) holds, then

�2(n) = − n2�

2n + 1
, (3.37)

�4(n) = n4�

(2n + 1)3 − n2�(n + 1)2�

(2n + 1)2(4n + 4)
− (n − 1)2�n2�

4n(2n + 1)2 . (3.38)

By (3.23) and (3.37), we obtain

a2(1) = �2(1) = −1

3
, a2(n) = (n − 1)2�

2n − 1
− n2�

2n + 1
for n�2. (3.39)

Observe that �2(n) → 0 if � ∈ [0, 1/2), while �2(n) → −1/2 if � = 1/2. Thus, we have

∞∑
n=1

a2(n) = 0 for � ∈ [0, 1/2) (3.40)
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and
∞∑

n=1

a2(n) = −1

2
if � = 1/2. (3.41)

By (3.38), we obtain that �4(n) → 0 if � ∈ [0, 1/2], so (3.23) yields

∞∑
n=1

a4(n) = 0 if � ∈ [0, 1/2]. (3.42)

4. Asymptotics of En(z)

In this section, we study the asymptotic behavior of En(z) for large n. Our approach is based
on the fact that the eigenvalue function En(z) satisfies a quasi-linear equation. Of course, the
same estimates and formulas could be found if one follows the Raleigh–Schrödinger scheme with
recurrences for the Taylor coefficients

�(z) =
∞∑

k=0

a2k(n)z2k, a0(n) = n2,

f (z) =
∞∑

j=0

fj z
j , fj ∈ �2(N), f0 = en,

as they would come if one substitute the above formulas into (4.1).
1. Throughout this section we assume that (2.1) and (2.2) with � ∈ [0, 1/2] hold, but after

(4.10) we assume that (1.3) holds also.
Suppose that n and z ∈ �n are fixed and � = En(z) is the corresponding eigenvalue of the

operator L + zB. Then, we have

(L + zB)f = �f (4.1)

for some f �= 0. Let P be the projector defined by Px = 〈x, en〉en, and let Q = 1 − P . Eq. (4.1)
is equivalent to the system of two equations

(� − L)f1 = zPB(f1 + f2), (4.2)

(� − L)f2 = zQB(f1 + f2), (4.3)

where f1 = Pf, f2 = Qf . The operator � − L is invertible on the range of the projector Q, we
set

Dek = 1

� − k2 ek if k �= n, Den = 0. (4.4)

Then, D is well defined in �2, and (� − L)Dx = x on the range of Q.
Acting on both sides of (4.3) by the operator BD, we obtain

Bf2 = zT Bf1 + zT Bf2, (4.5)

where

T = BD. (4.6)
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The operator 1 − zT is invertible for each z ∈ �n. Indeed, since T ek = BR0
�ek for k �= n and

T en = 0, the proof of (2.8) shows that

‖T ‖�4M · n�−1 for � ∈ Hn. (4.7)

Thus, we have

‖zT ‖� |z| · ‖T ‖ < 1

for each z ∈ �n and each � ∈ Hn.
Solving (4.5) for Bf2, we obtain

Bf2 = z(1 − zT )−1T Bf1. (4.8)

Inserted into (4.2), this leads to

(� − L)f1 = zPBf1 + z2P(1 − zT )−1T Bf1,

which implies (since 1 + zT (1 − zT )−1 = (1 − zT )−1)

(� − L)f1 = zP (1 − zT )−1Bf1, (4.9)

where f1 = const · en �= 0 (otherwise, by (4.3) it follows that f2 = 0, so f = f1 + f2 = 0,
which contradicts f �= 0). Since Len = n2en, Eq. (4.9) is equivalent to

� − n2 = z〈(1 − zT )−1Ben, en〉. (4.10)

Since

Bek = (k − 1)�ek−1 + k�ek+1, (4.11)

we have, by (4.4) and (4.6), that

T ek = 1

� − k2

(
(k − 1)�ek−1 + k�ek+1

)
, T en = 0, (4.12)

and therefore,

〈T 2kBen, en〉 = 0, k = 0, 1, 2, . . . . (4.13)

Let

En(z) = n2 + a1(n)z + a2(n)z2 + · · ·
be the Taylor expansion of En(z). Set for convenience

�(z) = En(z) − n2 = a1(n)z + a2(n)z2 + · · · . (4.14)

Then, by (4.10),

�(z) = 〈T Ben, en〉z2 + 〈T 3Ben, en〉z4 + 〈T 5Ben, en〉z6 + · · · , (4.15)

where, by (4.12), the operator T depends rationally on � = En(z) = �(z) + n2. It is easy to see,
by induction, that (4.15) yields a2k+1(n) = 0, k ∈ N (in fact, we know this from Section 3.1, see
(3.8)). Thus, we have

�(z) = a2(n)z2 + a4(n)z4 + · · · . (4.16)
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One may use (4.15) to compute the Taylor coefficients of �(z). Indeed, the right side of (4.15)
is a power series in z which coefficients are rational functions of � = �+n2 without a singularity
at 0. So, replacing these rational functions with their power series expansions at 0, and replacing
� with its power expansion (4.14), we obtain (comparing the resulting power series expansion on
the left and on the right) a system of equations for the coefficients a2(n), a4(n), . . . .

Next we compute some of these coefficients. By (4.11)–(4.15), it follows that

� = z2
(

(n − 1)2�

2n − 1 + �
− n2�

2n + 1 − �

)
+z4

(
(n − 1)2�(n − 2)2�

(2n − 1 + �)2(4n − 4 + �)
− n2�(n + 1)2�

(2n + 1 − �)2(4n + 4 + �)

)
+ · · ·

= z2
(

(n − 1)2�

2n − 1

(
1 − �

2n − 1
+ · · ·

)
− n2�

2n + 1

(
1 + �

2n + 1
+ · · ·

))
+z4

[
(n − 1)2�(n − 2)2�

(2n − 1)2(4n − 4)

(
1 − �

2n − 1
+ · · ·

)2 (
1 − �

4n − 4
+ · · ·

)

− n2�(n + 1)2�

(2n + 1)2(4n + 4)

(
1 + �

2n + 1
+ · · ·

)2 (
1 + �

4n + 4
+ · · ·

)]
+ · · · . (4.17)

Hence, we obtain

a2(�, n) = (n − 1)2�

2n − 1
− n2�

2n + 1
, n�2, (4.18)

a4(�, n) = (−a2(n))

(
(n − 1)2�

(2n − 1)2 + n2�

(2n + 1)2

)
+ (n − 1)2�(n − 2)2�

(2n − 1)2(4n − 4)
− n2�(n + 1)2�

(2n + 1)2(4n + 4)
, n�3. (4.19)

The same method gives

a6(�, n) = �1(n) − a2(n)�2(n) − a4(�, n)�3(n), n�4, (4.20)

where

�1(n) = (n − 1)2�(n − 2)4�

(2n − 1)3(4n − 4)2 − n2�(n + 1)4�

(2n + 1)3(4n + 4)2

+ (n − 1)2�(n − 2)2�(n − 3)2�

(2n − 1)2(4n − 4)2(6n − 9)
− n2�(n + 1)2�(n + 2)2�

(2n + 1)2(4n + 4)2(6n + 9)
, (4.21)

�2(n) = (n − 1)2�(n − 2)2�

(2n − 1)2(4n − 4)

(
2

2n − 1
+ 1

4n − 4

)
+ n2�(n + 1)2�

(2n + 1)2(4n + 4)

(
2

2n + 1
+ 1

4n + 4

)
+ n2�

(2n + 1)3 − (n − 1)2�

(2n − 1)3 , (4.22)

�3(n) = (n − 1)2�

(2n − 1)2 + n2�

(2n + 1)2 . (4.23)

Of course, the case of small n requires a special treatment. For example, if n = 1, then with

� = a2(1)z2 + a4(1)z4 + a6(1)z6 + · · · ,
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we have

� = z2
(

1

� − 3

)
+ z4

(
22�

(� − 3)2(� − 8)

)
+ z6

(
24�

(� − 3)3(� − 8)2 + 22�32�

(� − 3)2(� − 8)2(� − 15)

)
+ · · · ,

which leads to

a2(1) = −1

3
, a4(1) = 1

27
− 22�

72
(4.24)

(compare with (3.23), (3.37), (3.38)), and

a6(1) = − 24�

33 · 82 − 22�32�

33 · 82 · 5
+ 22�

3 · 82 − 2

35
. (4.25)

2. The following lemma gives the asymptotic behavior of a2k(�, n) as n → ∞.

Lemma 9. Under condition (1.3), if � ∈ [0, 1), then

a2k(�, n) = O(n2k(�−1)). (4.26)

Proof. We prove (4.26) by induction in k. If k = 1, then (4.18) yields

a2(�, n) = O(n2(�−1)). (4.27)

If k = 2, then (4.19) gives a4(�, n) as a sum of two expressions. For the first one we obtain, in
view of (4.27),

a2(�, n)

(
(n − 1)2�

(2n − 1)2 + n2�

(2n + 1)2

)
= O(n2(�−1)) · O(n2(�−1)) = O(n4(�−1)).

The remaining part of (4.19) is

(n − 1)2�(n − 2)2�

(2n − 1)2(4n − 4)
− n2�(n + 1)2�

(2n + 1)2(4n + 4)
. (4.28)

Each term of this difference is O(n4�−3). But (4.28) is O(n4(�−1)) due to the MeanValue Theorem.
Indeed, let f (m) = m2�(m + 1)2�(4m + 4)−1 and g(m) = (2m + 1)−2. Then, (4.28) may be
written as

f (n − 2)g(n − 1) − f (n)g(n) = (f (n − 2) − f (n))g(n − 1)

+f (n)(g(n − 1) − g(n)).

Since

f ′(t) = O(f (n)/n), g′(t) = O(g(n)/n) for t ∈ [n − 2, n],
by the Mean Value Theorem expression (4.28) is O(n4�−4), which proves (4.26) for k = 2.

Fix k�3 and assume that (4.26) holds for 1, . . . , k − 1. Then, by (4.15) and (4.16) we obtain,
in view of (4.17),

a2k = 〈T 2k−1Ben, en〉 +
∑

Cm1...mk−1a
m1
2 · · · amk−1

2(k−1),
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where m1 + 2m2 + · · · + (k − 1)mk−1 = k, and

T = BD with Den = 0, De� = 1

n2 − �2 e�.

In addition, for each term of the sum, we have

Cm1...mk−1a
m1
2 · · · amk−1

2(k−1) = O(n2k(�−1)).

(See (4.20)–(4.23) for the case k = 3.) Thus, Lemma 9 will be proved if we show that

〈T 2k−1Ben, en〉 = O(n2k(�−1)). (4.29)

Set

B = B+1 + B−1 and T = T+1 + T−1, (4.30)

where

B+1ek = k�ek+1, B−1ek = (k − 1)�ek−1, (4.31)

and

T+1 = B+1D, T−1 = B−1D. (4.32)

Then

〈T 2k−1Ben, en〉 =
∑

ε

	(ε), (4.33)

where the summation is over all 2k-tuples, ε = (ε1, . . . , ε2k) with ε� = ±1, and

	(ε) = 〈Tε2k−1 · · · Tε2Bε1en, en〉. (4.34)

Let


(ε) = (
1, . . . , 
2k), 
� = 
�(ε) = ε1 + · · · + ε�, � = 1, . . . , 2k; (4.35)

then, Tε� · · · Tε2Bε1en = const · en+
� . Therefore, since Den = 0, we have 	(ε) �= 0 if and only
if 
2k = 0 and 
� �= 0 for � �= 2k.

Now (4.33) implies that

〈T 2k−1Ben, en〉 =
∑
ε∈e+

[	(ε) + 	(−ε)], (4.36)

where the summation is over the set e+ of all 2k-tuples ε, such that 
nu(ε) > 0 for � = 1, . . . ,

2k −1. Since the cardinality of e+ does not exceed 22k , (4.29) will be proved if we show, for each
ε ∈ e+, that

	(ε) + 	(−ε) = O(n2k(�−1)). (4.37)

By (4.30)–(4.32), we obtain

	(ε) = −
∏2k

�=1(n + 
�−1 + (ε� − 1)/2)�∏2k−1
�=1 (
�(2n + 
�))

, 
0 = 0, 
� = ε1 + · · · + ε�.

Now, as above, the Mean Value Theorem may be used to show that (4.37) holds. This completes
the proof of Lemma 9. �
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3. Proof of Theorem 2: By Proposition 4 we know that, with Rn = n1−�/(8M),

|En(z) − n2|�n for z ∈ �n = {� : |�|�Rn}.

Lemma 10. For each k = 1, 2, . . . ,

|ak(n)| = 1

k!
∣∣∣E(k)

n (0)

∣∣∣ �(8M)kn1−k(1−�). (4.38)

Proof. Indeed, En(z) is analytic in �n.Therefore, the Cauchy inequality for the Taylor coefficients
of En(z) at 0 gives (4.38). �

Now, for |z|�R, we obtain∣∣∣∣∣En(z) − n2 −
6∑

k=1

a2kz
2k

∣∣∣∣∣ �
∞∑

k=7

|a2k(n)|R2k � Cn

n13−14� , (4.39)

where Cn = (8MR)14∑
k �0(8MR)2k/n2k(1−�) is a bounded sequence.

On the other hand, (4.18) and (4.19) imply that

a2(�, n) = (1 − 2�)

2n2−2� + (�2 − �)

n3−2� + (1 − 2�)(8�2 − 14� + 3)

24n4−2� + O(n2�−5) (4.40)

and

a4(�, n) = O(n4�−6). (4.41)

Formulas (4.20)–(4.23) yield

a6(�, n) = O(n6�−10). (4.42)

Analogous computations show that

a8(�, n) = O(n8�−14). (4.43)

Finally, by Lemma 9 we obtain

a10(�, n) = O(n10�−10), a12(�, n) = O(n12�−12). (4.44)

Now (4.39)–(4.44) imply (1.8). Indeed, if � ∈ [0, 1/2], then 2� − 5�4� − 6; moreover,

12� − 12�10� − 10�2� − 5

and 14� − 13�2� − 5, thus (1.8) holds.
If � ∈ [1/2, 2/3], then 2� − 5�4� − 6; so, since

12� − 12�10� − 10�4� − 6

and 14� − 13�4� − 6, we obtain that (1.8) holds. This completes the proof of Theorem 2. �
4. We consider separately the case where � = 1/2 in the following theorem.

Theorem 11. If |z|�R, then

En(1/2, z) = n2 − z2

4n2 − 2z2 + 3z4

32n4 + O(1/n6). (4.45)
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Proof. If � = 1/2, then (4.39) implies∣∣∣∣∣En(z) − n2 −
6∑

k=1

a2kz
2k

∣∣∣∣∣ �
∞∑

k=7

|a2k(n)|R2k � Cn

n6 , (4.46)

where Cn = (8MR)14∑
k �0(8MR)2k/nk is a bounded sequence. On the other hand, from

(4.18) to (4.23), it follows that

a2 = − 1

4n2 − 1
, (4.47)

a4 = 1

4(2n + 1)3 − 1

4(2n − 1)3 (4.48)

a6 = − 1

(2n + 3)(2n + 1)5(2n − 1)
+ 1

(2n + 1)(2n − 1)5(2n − 3)
. (4.49)

The same approach that leads to (4.18)–(4.23) gives

a8 = −327 − 16 080n2 − 63 136n4 + 29 440n6 + 39 168n8

32(n − 1)(n + 1)(2n − 3)(2n + 3)(2n − 1)7(2n + 1)7 , (4.50)

and

a10 = 3915 + 280 676n2 + 2 496 992n4 + 2 635 904n6 − 3 111 168n8 − 1 158 144n10

8(n − 1)(n + 1)(2n − 3)(2n + 3)(2n − 5)(2n + 5)(2n − 1)9(2n + 1)9 .

(4.51)

By (4.48)–(4.51) we obtain

a2(1/2, n) = − 1

4n2 − 1

16n4 + O(n−6), (4.52)

a4(1/2, n) = − 3

32n4 + O(n−6), (4.53)

and

a6(1/2, n) = O(n−8), a8(1/2, n) = O(n−10), a10(1/2, n) = O(n−14). (4.54)

In addition, Lemma 9 implies that

a12(1/2, n) = O(n−6). (4.55)

Now (4.45) follows from (4.46) and (4.52)–(4.55). �

Remark 12. We evaluate a12 in (4.55) by using the general estimate (4.26) from Lemma 9.
However, a direct computation of the coefficients a2k(n) for 6�k�14 shows that each of them
is O(1/n16). Estimating the remainder as in the proof of Theorem 11, we get∑

k �15

a2k(n)zk = O(1/n14), |z|�R. (4.56)
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So, by (4.51), we have

En(z) = n2 + a2z
2 + a4(n)z4 + a6(n)z6 + a8(n)z8 + O(1/n14), |z|�R. (4.57)

It follows from here, in view of (4.47)–(4.50), that

En(z) = n2 +
6∑

k=1

Pk(z)
1

n2k
+ O(1/n14), (4.58)

where

P1(z) = −z2

4
, P2(z) = −2z2 + 3z4

32
, P3(z) = −z2 + 5z4

64
,

P4(z) = −2z2 − 21z4 + 28z6

512
, P5(z) = −8z2 − 144z4 + 1920z6 + 153z8

8192
,

P6(z) = −2z2 − 55z4 + 5192z6 + 880z8

8192
. (4.59)

See further discussion in Section 7.3.

5. Analytic continuation of eigenvalues and regularized trace

1. Each eigenvalue Ek(z), as we have seen in Proposition 4, is well defined and simple if
|z|�Rk = k1−�/8M. We are going to show that it is possible to continue Ek(z) analytically as z

is moving along a smooth curve which goes around singular points � ∈ S, where S is a countable
set without a finite point of accumulation.

Fix n ∈ N and consider the rectangle

W ≡ Wn = {� ∈ C : −n < Re � < n2 + n, |Im �| < n}.
By Proposition 6, the projector

P∗(z) = 1

2�i

∫
�W

(� − L − zB)−1 d�

is well defined for z ∈ �n and

dim P∗(z) = n.

Consider the analytic functions

�j (z) = Trace

(
1

2�i

∫
�W

�j (� − L − zB)−1 d�

)
, 1�j �n. (5.1)

If |z| is small, say |z| < ε < R1, then

�j (z) =
n∑

k=1

(Ek(z))
j , 1�j �n, (5.2)
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where all Ek(z) are well defined. Moreover,

n∏
1

(� − Ek) =
n∑
0

Qn−j (E)�j , (5.3)

where {Qi}n1, Q0 ≡ 1, are symmetric polynomials of {Ek}n1. But {�j }n1 is a basis system of
symmetric polynomials (see, e.g. [17]), and therefore,

Qj = qj (�) (5.4)

are polynomials of �’s. Thus,

n∏
1

(� − Ek) =
n∑
0

qn−j (�(z))�j , (5.5)

at least for small |z|, say |z| < ε. However, the coefficients cj (z) = qn−j (�(z)) are well defined
by (5.4), (5.1) in the entire disk �n and analytic there. Factorization (5.3) becomes

n∏
1

(� − Ek(z)) =
n∑
0

cj (z)�
j , (5.6)

and the equation

c(z, �) :=
n∑
0

cj (z)�
j = 0, |z|�Rn, (5.7)

defines over �n the surface

Gn = {(�, z) ∈ C × �n : c(z, �) = 0} (5.8)

with n sheets and possible branching points z∗ if the polynomial
∑n

0 cj (z∗)�j has multiple roots.
Such a point z∗ is a root of the resultant

r(z) = R(c(z, ·), c′
�(z, ·)) (5.9)

of the polynomial c(z, �) and its derivative c′
�. Notice that r(z) is an analytic function of z, |z|�Rn,

because the resultant is a polynomial of cj (z) ∈(5.7). If z = 0, then

n∑
0

cj (0)�j =
n∏
1

(� − k2), (5.10)

and all zeros are simple. Therefore, r(0) �= 0, so the resultant r(z) is not identically zero. Thus,
the set

�n = {z ∈ �n : r(z) = 0} (5.11)

is finite. By Proposition 4 we can conclude that

�n ⊂ �n+1 and �n+1 ∩ �n = �n. (5.12)
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Thus, the set

S =
⋃

�n (5.13)

is countable and has no finite points of accumulation.
We have proved the following.

Proposition 13. Under the conditions of Proposition 4, there is a countable set S without finite
accumulation points, such that if

� = {z(t) : 0� t �T }, z(0) = 0, � ∩ S = ∅
is a smooth curve, then each eigenvalue function Ek(z), Ek(0) = k2, can be extended analytically
along the curve �.

2. We define SRS of the pair (L, B) as

G = {(�, z) ∈ C2 : (L + zB)f = �f, f ∈ �2(N), f �= 0}. (5.14)

Proposition 14. Under the conditions of Proposition 4, for each z /∈ S the surface G has infinitely
many sheets over a neighborhood Uε � z for small enough ε(z) > 0. Each branching point z∗ ∈ S

is of finite order.

Proof. Everything has been already explained. The surface G over �n is defined by (5.7), and,
by (5.7)–(5.11), �(z) has branching points z∗ ∈ �n of order �n. �

3. We follow the 1975 Schäfke construction (see [20, pp. 88–89]), as it is presented by Volkmer
[40], to analyze whether the SRS G is irreducible.

Let k, j ∈ N. We call k and j equivalent, k ∼ j , if there is a smooth curve

� : [0, T ] → C \ S, �(0) = �(T ) = 0,

such that the analytic continuation of Ek(z) along � leads to Ej(z). (An SRS G is irreducible if
N is the only equivalence class, i.e., k ∼ j for any k, j ∈ N.)

Such construction, carried for each k ∈ N, defines a mapping

�� : N → N, �(k) = j,

such that ��−1(j) = k, where �−1(t) = �(T − t). With Rn → ∞, we have for some n that
max[0,T ] |�(t)|�Rn. Therefore, by Proposition 4,

��(k) = k if k > n. (5.15)

Lemma 15. Let M be an equivalence class (or union of equivalence classes), and n ∈ N. Then,
the function

Ẽn(z) =
∑

k∈M,k �n

Ek(z) (5.16)

(which is well defined and analytic for small enough |z|) can be extended analytically on the disk
{z : |z|�Rn}, Rn = n1−�/(8M).
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Proof. Take any smooth curve � : [0, T ] → �n \ S, such that �(0) = �(T ) = 0. Then,
� = �� : M → M is a bijection, and (5.15) holds, so � permutes the finite set {k ∈ M : k�n}.
Therefore, Ẽn(z) can be continued analytically, term by term in (5.16), and the result will be∑

k∈M,k �n

E�(k)(z) =
∑

j∈M,j �n

Ej (z) = Ẽn(z), z ∈ �n \ S,

i.e., the same function. By Proposition 6, if |z|�Rn, then we have exactly n eigenvalues on the
left of the line hn = {Re � = n2 + n}, and all of them lie in the rectangle Wn. Therefore,∣∣Ẽn(z)

∣∣ �n(n2 + 2n). (5.17)

So, the function Ẽn(z) is analytic and bounded on �n \ S, while the set �n ∩ S is finite. Thus, it
is analytic in the disk �n. �

Inequality (5.17) cannot be improved essentially because

n∑
1

Ek(0) =
n∑
1

k2 = n(n + 1)(2n + 1)/6 ∼ n3.

However, we can regularize Ẽk(z) by considering Ẽk(z) − Ẽk(0), where Ẽk(0) is real.
Again by Proposition 6, if |z|�Rn, then the operator L + zB has n eigenvalues that lie in the

rectangle Wn, so the absolute value of the imaginary part of each of these eigenvalues is less than
n. Therefore,∣∣Im (Ẽn(z) − Ẽn(0)

)∣∣ �n2. (5.18)

By Borel–Caratheodory theorem (see Titchmarsh [30, Chapter 5, 5.5 and 5.51]), if g(z) is
analytic in the disk |z| < R, g(0) = 0 and |Im g(z)|�C, then |g(z)|�2C for |z|�R/2. Thus,
(5.18) implies∣∣Ẽn(z) − Ẽn(0)

∣∣ �2n2 for |z|�Rn/2. (5.19)

This conclusion is valid for each equivalence class, or union of equivalence classes M; in
particular, for M = N.

4. Definition of the regularized trace tr(z): Now we are ready to define an entire function tr(z),
the regularized trace of L + zB, under conditions (2.1) and (2.2) with � < 1/2, or (1.3) with
� = 1/2.

For small z, |z|�R1 = 1/(8M), all En(z) are well defined, and

tr(z) =
∞∑

n=1

(
En(z) − n2

)
=

∞∑
n=1

( ∞∑
k=1

a2k(n)z2k

)

=
∞∑

n=1

(
a2(n)z2 + a4(n)z4 +

∞∑
k=3

a2k(n)z2k

)

= z2 · lim
p→∞ �2(p) + z4 · lim

p→∞ �4(p) +
∞∑

n=1

∞∑
3

· · · . (5.20)
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By (3.32)–(3.35), the latter limits are well defined and the third term is an absolutely convergent
series. Indeed, by (4.38), Lemma 10, we have for |z| < 1/(8M) that

∞∑
n=1

( ∞∑
k=3

|a2k(n)|
)

|z|2k �
∞∑

n=1

( ∞∑
k=3

(8M)2k

n2k(1−�)−1

)
1

(8M)2k

=
∞∑

n=1

n

n6(1−�)
· 1

1 − n�−1 < ∞ for � < 2/3.

Therefore, (5.20) defines tr(z) as an analytic function in the disk |z|�1/(8M).

Fix N ∈ N and consider the analytic function ẼN (z), z ∈ �N , given by Lemma 15 in the case
where M = N. For small |z|, we have

tr(z) = ẼN (z) − ẼN (0) +
∞∑

n=N+1

(
En(z) − n2

)
. (5.21)

The same formula gives the analytic extension of tr(z) on �N because the series on the right side
of (5.21) converges uniformly on �N. Indeed, with En(z) = a2(n)z2 + a4(n)z4 + · · · , we have

∞∑
N+1

(
En(z) − n2

)
=
( ∞∑

N+1

a2(n)

)
z2 +

( ∞∑
N+1

a4(n)

)
z4

+
∞∑

n=N+1

∞∑
k=3

a2k(n)z2k. (5.22)

By (3.9) we obtain, for n�N + 1 and |z|�RN = N1−�/(8M),

∞∑
k=3

|a2k(n)| |z|2k �
∞∑

k=6

4k + 2

n(1−�)k−1
(4M)kRk

N �C(N, �)

(
1

n

)6(1−�)−1

, (5.23)

where C(N, �) = N6(1−�)
∑

k �6(4k + 2)2−k < ∞. Now, in view of (5.22), estimate (5.23)
implies that the series in (5.21) converges uniformly in �N if � ∈ [0, 1/2], thus tr(z) can be
extended analytically in the disk �N. Since ∪N �N = C this defines tr(z) as an entire function.

5. Proof of Theorem 1: According to the previous subsection, tr(z) is an entire function. There-
fore, it is enough to prove (1.7) only for small |z|, or to evaluate its Taylor coefficients. By (5.22)
tr(z) = ∑∞

1 A2kz
2k , where

A2k =
∞∑

n=1

a2k(n) = lim
p→∞ �2k(p).

If � < 1/2, then we have, by (3.34) and (3.35),

lim
p→∞ �2k(p) = 0, k = 1, 2, . . . ,

and therefore, tr(z) ≡ 0.

If � = 1/2, then (3.34) and (3.35) imply

lim
p→∞ �2k(p) = 0, k = 2, . . . ,



316 P. Djakov, B. Mityagin / Journal of Approximation Theory 139 (2006) 293–326

and by (3.32), if the limit � = lim bkck/k exists, then

lim
p→∞ �2(p) = lim

p→∞

(
− bpcp

2p + 1

)
= −�

2
,

so tr(z) = −(�/2)z2. This completes the proof of Theorem 1.

6. Spectral Riemann Surfaces

In our analysis of the regularized trace, it was important to see that by inequality (4.38) from
Lemma 10

ak(n) = 1

k!
∣∣∣E(k)

n (0)

∣∣∣ �(8M)kn1−k(1−�),

so the series

∞∑
n=1

∣∣∣E(k)
n (0)

∣∣∣ < ∞ if � < 1 − 2/k. (6.1)

Therefore, for every subset M ⊂ N, the partial sum

E (k)(M) =
∑

m∈M
E(k)

m (0) (6.2)

is well defined.
On the other hand, (5.19) and the Cauchy inequality for the Taylor coefficients yield

1

k!
∣∣∣Ẽ(k)

n (0)

∣∣∣ � 2n2

(Rn/2)k
= 2(16M)kn2−k(1−�). (6.3)

So, if � < 1 − 2/k, then

lim
n

∣∣∣Ẽ(k)
n (0)

∣∣∣ = lim
n

∣∣∣∣∣∣
∑

m∈M,m�n

E(k)
m (0)

∣∣∣∣∣∣ = 0. (6.4)

Therefore, the following statement is true.

Proposition 16. If � < 1 − 2/k, then we have for each equivalence class M of the SRS of the
pair (L, B) that

E (k)(M) ≡
∑

m∈M
E(k)

m (0) = 0. (6.5)

4. Finally, we show that some SRS are irreducible, which is the claim of Theorem 3.

Proof of Theorem 3. First, we consider the case where (1.3) holds with � = 1/2. By Proposition
16, Theorem 3 will be proved if we show that there is no proper subset M ⊂ N with property
(6.5) for a fixed k > 2/(1 − �). Indeed, then N will be the only one equivalence class, which
implies that the SRS is irreducible.
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If � = 1/2, then k = 6 is the least even k for which k > 2/(1 − �). By (4.49), we have

1

k!E
(6)
n (0) = a6(1/2, n) = �(n) − �(n − 1), n = 2, 3, . . . , (6.6)

where

�(n) = − 1

(2n − 1)(2n + 1)5(2n + 3)
. (6.7)

On the other hand, from (4.24), with � = 1/2, it follows that

a6(1/2, 1) = �(1) = − 1

5 · 35
. (6.8)

In view of (6.6)–(6.8),

a6(1/2, 1) < 0, a6(1/2, n) > 0 for n�2, (6.9)

and

∞∑
n=2

a6(1/2, n) = −a6(1/2, 1).

Certainly, if∑
n∈M

a6(n) = 0 then M = N. (6.10)

This proves Theorem 3 for � = 1/2. �

If � ∈ [0, 1/2), then 4 > 2/(1 − �), so, in view of Proposition 16 and the above discussion,
the SRS corresponding to � ∈ [0, 1/2) will be irreducible if all but one terms of the sequence

a4(�, n) = 1

4!E
(4)
n (0)

have the same sign. Below, in Lemma 17, we show that this is true if � ∈ [0, 0.085] and � ∈
[(2 − √

2)/4, 1/2], which completes the proof of Theorem 3.
5. For convenience, we set � = 2� and

ã4(�, n) = a4(�/2, n), �̃4(�, n) = �4(�/2, n).

Lemma 17. Under the above notations, we have

ã4(�, 1) = �̃4(�, 1) = 1

27
− 2�

72
> 0, � ∈ [0, 1], (6.11)

ã4(�, 2) < 0, � ∈ [0, 1], (6.12)

ã4(�, n) > 0 if � ∈ [0, 0.1717], n�3, (6.13)

ã4(�, n) < 0 if � ∈
[(√

2 − 1
)

/
√

2, 1
]
, n�3. (6.14)
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Proof. By (3.23) and (3.38), we have that (6.11) holds, and moreover,

ã4(�, n) = �̃4(�, n) − �̃4(�, n − 1), (6.15)

where

�̃4(n) = n2�

(2n + 1)3 − n�(n + 1)�

(2n + 1)2(4n + 4)
− (n − 1)�n�

4n(2n + 1)2 . (6.16)

In particular,

ã4(�, 2) = �̃4(�, 2) − �̃4(�, 1) =
(

22�

53 − 6�

300
− 2�

200

)
−
(

1

27
− 2�

72

)
.

Graphing ã4(�, 2) one can easily see that (6.12) holds. In the same way, one can verify that the
following inequalities hold:

ã4(�, m) > 0 if � ∈ [0, 0.1717], m = 3, 4, 5, 6, (6.17)

and

ã4(�, m) < 0 if � ∈
[(√

2 − 1
)

/
√

2, 1
]
, m = 3, 4, 5, 6. (6.18)

In order to prove (6.13) and (6.14) for each n > 6, we study the sign of partial derivative
��4/�n. Set

b(�, n) = n2−2�(2n + 1)2 · ��̃4

�n
(�, n), (6.19)

then

b(�, n) = −3

2

(
1 + 1

2n

)−2

+ �

(
1 + 1

2n

)−1

− �

4

(
1 + 1

n

)�−1

− c − 1

4

(
1 + 1

n

)�−2

+ 1

2

(
1 + 1

n

)�−1 (
1 + 1

2n

)−1

− �

4

(
1 − 1

n

)�−1

+ 1

2

(
1 − 1

n

)� (
1 + 1

2n

)−1

− � − 1

4

(
1 − 1

n

)�

. (6.20)

The power series expansion of b(�, n) about n = ∞ is

b(�, n) =
∞∑

k=2

bk(�)(1/n)k, (6.21)

where

b2(�) = 5 − 22� + 18�2 − 4�3

8
, (6.22)

b3(�) = −10 + 25� − 14�2 + 2�3

8
. (6.23)
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By (6.20), estimating from above |bk(�)|, we obtain

bk(�) � 3

2
· k + 1

2k
+ �

2k
+ �

4
+ 1 − �

4
(k + 1)

+1

2

(
1

2k
+ 2�

)
+ �

4
+ 1

2

(
1

2k
+ �

)
+ 1 − �

4
· �

k
, (6.24)

where each term comes from the expansion of the corresponding term in (6.20).
For example, consider(

1 − 1

n

)� (
1 + 1

2n

)−1

=
[

1 +
∞∑
i=1

(
�
i

)(
1

n

)i
] ∞∑

j=0

2−j

(
−1

n

)j

. (6.25)

Since 0���1, we have∣∣∣∣( �
i

)∣∣∣∣ = �

i
· |� − 1|

1
· |� − 2|

2
· · · |� − (i − 1)|

i − 1
� �

i
. (6.26)

Thus, the absolute value of the coefficient of (1/n)k in (6.25) does not exceed

1

2k
+ �

1
· 1

2k−1 + �

2
· 1

2k−2 + �

3
· 1

2k−3 + · · · + �

k

� 1

2k
+ �

2

(
1

2k−2 + 1

2k−2 + 1

2k−3 + · · · + 1

)
= 1

2k
+ �.

Inequality (6.24) may be written as

bk(�)�
3

2
· k + 1

2k
+ 1 + �

2k
+ 2� + 1 − �

4
(k + 1) + �

4k
. (6.27)

Since

∞∑
k=4

xk = x4

1 − x
,

∞∑
k=4

(k + 1)xk =
(

x5

1 − x

)′
= 5x4 − 4x5

(1 − x)2 ,

we obtain, by (6.27),

∞∑
k=4

|bk(�)|n−k �M(�, n) · 1

n3 , (6.28)

where

M(�, n) = 3(10n − 4)

16(2n − 1)2 + 1 + �

8(2n − 1)
+ 33�

16(n − 1)
+ 1 − �

4
· 5n − 4

(n − 1)2 . (6.29)

Thus, we have

nb2(�) + b3(�) − M(�, n)�n3b(�, n)�nb2(�) + b3(�) + M(�, n). (6.30)
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On the other hand,

8b2(�) = (5 − 2�)
(
� −

(
1 − 1/

√
2
)) (

� −
(

1 + 1/
√

2
))

,

and therefore,

b2(�) > 0 for � ∈
[
0, 1 − 1/

√
2
)

, b2(�) < 0 for � ∈
(

1 − 1/
√

2, 1
]
. (6.31)

One can easily see, for each fixed � ∈ [0, 1], that M(�, n) is a decreasing function of n. This fact
leads, in view of (6.30) and (6.31), to the following inequalities:

0 < 6b2(�) + b3(�) − M(�, 6)�n3b(�, n), � ∈ [0, 0.19), n�6 (6.32)

and

n3b(�, n)�6b2(�) + b3(�) + M(�, 6) < 0, � ∈
(

1 − 1/
√

2, 1
]
, n�6. (6.33)

(We checked the left inequality in (6.32) and the right inequality in (6.33) numerically by graphing
the corresponding functions of �.)

In view of (6.19) and (6.32), ��̃/�n(�, n) > 0 if � ∈ [0, 0.19] and n�6, so �̃(�, n) increases
with n. Therefore, for each � ∈ [0, 0.19] and n > 6, we obtain by (6.17) that ã(�, n) > ã(�, 6) > 0,
which proves (6.13).

In a similar way, (6.33) implies that �̃(�, n) decreases with n if � ∈ [1 − 1/
√

2, 1] and n�6.
Thus, in view of (6.18), we obtain that ã(�, n) < ã(�, 6) < 0, for � ∈ [1 − 1/

√
2, 1] and n�6,

which proves (6.14). This completes the proof of Lemma 17. �

7. Conclusion; comments and questions

1. So far in our analysis we focused on the tri-diagonal matrices given by (2.1) and (2.2), or
(1.3) with � < 1, or even with ��1/2. The Whittaker–Hill matrices (1.6) satisfy (2.1) and (2.2)
with � = 1, M = 4 + t . Proposition 4 tells us that the eigenvalues En(z), n ∈ N, are analytic
functions in the disk � = {|z| < 1/(8M)}, and nothing more. But these matrices come from the
differential operator

Ay = −y′′ + q(x)y, (7.1)

considered with

q(x) = a cos 2x + b cos 4x, a = −4zt, b = −2z2. (7.2)

Let q(x) be a real analytic periodic function of period �. Of course, then q extends analytically
in a neighborhood of I = [0, �], say, in

Gε = {w = x + iy : −ε�x�� + ε, −ε�y�ε}, ∃ε > 0. (7.3)

In other words, q is in the Banach space A(Gε) of all functions that are continuous in Gε and
analytic in its interior, with the norm

‖f ‖ = max{|f (w)| : w ∈ Gε}.
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Consider the boundary conditions

Per+ : y(0) = y(�), y′(0) = y′(�),

Per− : y(0) = −y(�), y′(0) = −y′(�),

Dir : y(0) = y(�) = 0.

To be certain, let us talk only about the periodic boundary conditions Per+, and let us con-
sider the (invariant) subspace of even functions. Then, operator (7.1) has eigenvalue functions
En(z), En(0) = (2n)2, n = 1, 2, . . . .

Volkmer [39] proved that if q is a real analytic function, then En(z) is well defined as an analytic
function in the disk

�n = {z : |z|�Rn}, Rn = an2, a > 0.

Careful analysis of the proof in [39] shows that a stronger quantitative statement holds.

Proposition 18. If

q ∈ A(Gε), ε > 0, (7.4)

then the eigenvalues En(q) of operator (7.1) are well defined if q is real valued on [0, �] and
small by norm. Moreover, for each n, En(q) can be extended as an analytic function of q in the
ball

B(Rn) = {q ∈ A(Gε) : ‖q‖�Rn},
with Rn = an2, a = a(ε) > 0.

As soon as we have this proposition, we can consider the potentials (7.2) as elements of A(Gε),
with, say, ε = 1/4. Then,

‖4zt cos 2x + 2z2 cos 4x‖�4|zt |e2· 1
4 + 2|z|2e4· 1

4 �7
(
|zt | + |z|2

)
, (7.5)

and therefore, if

|tz| + |z|2 � a

7
n2, (7.6)

then

en(z) = En(q), q = 4zt cos 2x + 2z2 cos 4x, (7.7)

is an analytic function of z. Choose

Rn = n(1 + 4|t |/a)−1, (7.8)

then

z ∈ �n = {z : |z|�Rn} ⇒ (7.6), (7.9)

and therefore, the function en(z) is analytic in the disk �n.
We explained the following statement (which is stronger than its analogue coming from Propo-

sition 4).
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Proposition 19. Under conditions (1.6), the spectrum of operator (1.1) is discrete. The function
en(z) ∈ (7.7) is analytic in �n ∈ (7.9) , and

en(0) = n2, |en(z) − n2|�n if z ∈ �n.

2. Of course, the claim of Proposition 19, with Rn = an/(a+4|t |), is stronger than Proposition 4
with Rn = 1/8. This example, together with Remark 12, supports our belief that, for matrices
(L, B) ∈ (2.1), Proposition 4 can be significantly improved, so that to give analyticity of En(z) ∈
(2.4), (2.5) in the disk �n ∈ (2.3) with

Rn = bn2−�, ∃b = b(�) > 0. (7.10)

If � = 0 this is true, but again it comes from Volkmer’s result [37,39] for the Mathieu differential
operator which is unitary equivalent to matrices (1.3) and (1.4).

However, even in this case, no approach to the proof of this statement is known in the framework
of matrix analysis.

3. Of course, if the Taylor expansion

En(z) = n2 +
∞∑

k=1

a2k(n)z2k

is known, then one may find the radius of convergence of En(z) as

rn =
(

lim sup
k

|a2k(n)|1/2k

)−1

.

Proposition 7 gives that

|a2k(n)|�8kn ·
(

8M

n1−�

)2k

for (L, B) ∈ (2.1) + (2.2). However, if B ∈ (1.3), i.e.,

bk = ck = k�, 0�� < 2,

we believe that

|a2k(n)|�n�
(

A

n2−�

)2k

, n = 1, 2, . . . , � > 0, A > 0. (7.11)

Of course, (7.11) would imply (7.10).
4. Maybe, representation (3.6), (3.23) and (3.24) of Propositions 7 and 8 could be used in an

attempt to get (7.11). But let us make a couple of elementary remarks to Propositions 7 and 8.

Remark 20. It was observed in (3.8), on the basis of the representation (3.6) and (3.23), (3.24),
that ak(n) ≡ 0 for odd k. This follows also from the equality

Sp(L + zB) = Sp(L − zB), z ∈ C, (7.12)

because (7.12) implies that all En(z) are even functions.
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(In particular, this implies that in formulas like (4.58) and (4.59) the coefficients Pk(z) should
be even functions. In [4], however, formula (8) in Theorem 2.1 has P1(z) = (z3 − 4z)/16, so one
can conclude that this is not correct even without knowing the correct formula.)

To get (7.12), consider the unitary operator U defined by

Uej = (−1)j ej , 1�j < ∞, U2 = 1. (7.13)

Then, for each matrix A = [A(i, j)] the operator Ã = U−1AU = UAU has a matrix Ã(i, j) =
(−1)i−jA(i, j). In particular, U−1(L + zB)U = L − zB, i.e., the operators L + zB and L − zB

are similar, and therefore, (7.12) holds. Of course, this implies that En(z) are even functions.

Remark 21. By Propositions 7 and 8, the integrals that appear in (3.8) and (3.24) vanish if
|j − n| > k. But they vanish even if |j − n| > k/2.

After Remark 20, we can talk only about even k, say k = 2m. Let us focus on (3.24), i.e., on
the integrals

I (n; j, k) =
∫

hn

�〈R0
�(BR0

�)
kej , ej 〉 d�, (7.14)

where hn = {� ∈ C : � = n2 + n + it, t ∈ R}.
The integrand in (7.14) is a linear combination of rational functions like (3.26) with coefficients

depending on B, where each rational function corresponds to a walk (j0, j1, . . . , jk) from j to
j on the integer grid Z, with steps ±1. Indeed, when the operator R0(BR0)k acts on ej , then
(since R0e� = (1/(�− �2))e� while Be� is a linear combination of e�−1 and e�+1) we get a linear
combination of 2k vectors, each of them coming from some walk (j0, j1, . . . , jk) as ej0 → ej1 →
· · · → ejk

. Since 〈ejk
, ej 〉 �= 0 only for jk = j , we consider further only walks from j to j .

Moreover, the argument used to prove the point (iii) in the proof of Proposition 8 shows that the
rational function Q of (3.26) yields a non-zero integral over the line hn only if it has poles both
on the left and on the right of hn, and its poles j2

� come from the vertexes of the corresponding
walk (j0, j1, . . . , jk). In other words, if j < n (respectively, j > n) then the corresponding walk
j0 = j, j1, . . . , jk = j should pass through n + 1 (respectively, n).

Take now any j such that |j − n| > k/2. If j < n (respectively, j > n), then there is no k-step
walk from j to j passing through n + 1 (respectively, n) because the steps are equal to ±1. Thus,
each of the integrals (7.14) vanishes if |j − k| > k/2.

5. We consider ��0 in (1.3) and elsewhere to have unbounded or non-compact operators B.
Of course, Theorems 1 and 2 remain valid for � < 0 as well. But then a simpler proof can be
given because for � < 0 the restriction � < 1 − 2/k holds with k = 2. In particular, by (6.5), i.e.,
by Proposition 16, we have

E (2)(M) =
∑

m∈M
E(2)

m (0) = 0

for any equivalence class of the SRS of the pair (L, B) ∈ (2.1) + (2.2), � < 0.
Of course, it is easier to study the sign of a2(�, n) than the sign of a4(�, n) (compare to

Lemma 9). By (3.32), we have

a2(1) = −b1c1

3
, a2(n) = bn−1cn−1

2n − 1
− bncn

2n + 1
.



324 P. Djakov, B. Mityagin / Journal of Approximation Theory 139 (2006) 293–326

If (bn) and (cn) are decreasing sequences of positive numbers, then

a2(1) < 0, a2(n) > 0, n�2,

and we can use the same argument as before (see the proof of Theorem 3) to conclude that the
corresponding SRS is irreducible. So, we proved the following analog of Theorem 3.

Proposition 22. Suppose that (2.1) and (2.2) hold with monotone decreasing sequences b = (bn)

and c = (cn), and with � < 0. Then, the corresponding SRS is irreducible.

We have to admit that with all variety of pairs (L, B) for which we have proved the SRS’s
irreducibility, we know no nontrivial (i.e., beside the case where some entries bk or ck vanish, or
diagonal entries are multiple) example of a pair (L, B) with a reducible SRS.

6. From � < 0 we can go to another direction, i.e., consider � ∈ (1/2, 1). The estimate (7.11)
is our conjecture, but even now we can claim the following amendment to Theorem 1.

Proposition 23. Under assumptions (2.1) and (2.2), if 0�� < 9/10, then the regularized trace

tr1(z) =
∞∑

n=1

(
En(z) − n2 − 1

2
E′′

n(0)z2
)

(7.15)

is well defined as an entire function of z, and

tr1(z) ≡ 0. (7.16)

The proof is based on (4.41)–(4.44) and the estimates given by Lemma 9. It goes along the
same lines as Definition of regularized trace in Section 5.4 and the proof of Theorem 1; see
(5.20)–(5.22). We omit the details.

Of course, one can introduce the higher order regularized traces

trp(z) =
∞∑

n=1

⎛⎝En(z) − n2 −
p∑

j=1

E
(2j)
n (0)

(2j)! z2j

⎞⎠
and study for which � this expression is well defined as an entire function.

It is important to mention that many interesting examples of evaluation of a regularized trace
can be found in the recent papers [7–9,16,21–24], although there the operators L and B are usually
self-adjoint and z is real. Let us notice that, in our Theorem 1, the first line of (1.7), � < 1/2, can
be interpreted as an example to Theorem 1 in [22]. Then, the second line of (1.7) shows that the
restrictions on 
 and 	 in [22] could not be weakened.
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